Solid State Radiation Sensor

Description
The function of the RD2014 radiation sensor is based on an array of customized PIN diodes. The integrated pulse discriminator with a temperature compensated threshold level provides true TTL signal output. The RD2014 is capable of detecting beta radiation (electrons), gamma radiation (photons) and X-rays.

The performance of the RD2014 solid state sensor, in combination with high immunity to electrostatic fields make it a good choice for new state-of-the-art designs as well as for upgrading existing designs.

Features and Benefits
- **Integrated pulse discriminator with TTL output**
- Detects beta and gamma radiation and X-rays
- High immunity to electrostatic fields
- Calibrated sensitivity to gamma radiation (±10%)
- Linear sensitivity over wide temperature range (-30°C to 50°C)
- Low power requirement (400µA) is ideal for battery powered applications
- 4.5V to 5.5V supply voltage
- Large radiation sensitive window: 60 mm²
- Swiss made

Application Areas
- Precision test equipment for nuclear radiation
- Portable nuclear radiation detectors
- Student projects
Absolute Maximum Ratings

Supply voltage, V_{CC} 6.5 V
Output short-circuit current continuous
Storage temperature range -65°C to 110°C

Electrical characteristics
at $V_{CC} = 5.0V$, $T_A = 25°C$ (unless otherwise noted)

Measurement range of radiation dose equivalent rate (Cs-137 & Co-60) 0.1 µSv/h to 100 mSv/h

Sensitivity 6 cpm TYP for 1 µSv/h radiation dose
Output pulse level TTL (positive going)
Output pulse width 40 μs to 150 μs, depending on pulse energy level
Supply voltage, V_{CC} 4.5 V to 5.5 V
Supply current, I_S 400 µA TYP, 600 µA MAX
Linear temperature range -30°C to 50°C

RD2014 Typical Sensor Energy Response
RD2014 Sensor Linearity

\[dH^*(10) / dt = \text{Radiation dose equivalent rate for Cs-137 and Co-60 (mSv/h)} \]

RD2014 Typical Sensor Sensitivity vs. Temperature

Noise Level allowed on Power Source

See Fig. 1 for test conditions
RD2014 Functional Block Diagram

Application Information

Power Source Noise Filter

A RC-filter is recommended when working with noisy power sources (Fig. 1).

Radiation Detection Survey Meter

Simple battery-powered monitoring device with a LED diode to indicate beta and gamma radiation, and x-rays
Dimensions and Wiring Connections

![Diagram of RD2014 with dimensions and connections](attachment:image.png)

AW = Active Window

Connection Descriptions

View from connector side

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td>TTL output signal</td>
</tr>
<tr>
<td>VCC</td>
<td>+4.5V to 5.5V power supply</td>
</tr>
<tr>
<td>GND</td>
<td>Power supply & output signal ground</td>
</tr>
</tbody>
</table>

Disclaimer

Neither the whole nor any part of the information contained in, or the product described in this datasheet, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder.

This product and its documentation are supplied on an as is basis and no warranty as to their suitability for any particular purpose is either made or implied. Teviso Sensor Technologies will not accept any claim for damages howsoever arising as a result of use or failure of this product. Your statutory rights are not affected.

This product or any variant of it is not intended for use in any medical appliance, device or system in which the failure of the product might reasonably be expected to result in personal injury.

This document provides preliminary information that may be subject to change without notice.